Theorem 1. Let $[a], [b] \in \mathbb{Z}_n$. Then $[a] \cdot [b] = [0]$ implies one of [a] or [b] is [0] if and only if n is prime.

Proof.

- (\Longrightarrow) Suppose that n is composite. Then n=xy with 1 < x, y < n. Thus $[x], [y] \neq [0]$, but [x][y] = [xy] = [n] = [0]. This proves the forward direction by contrapositive.
- (\Leftarrow) Suppose that n is prime and suppose that [a][b] = [0]. Without loss of generality, assume that $[a] \neq 0$. Let $x \in [a]$ and $y \in [b]$ such that $0 < x, y \leq n$. Since $[a] \neq [0]$, we know that 0 < x < n. Since [a][b] = [ab] = [xy] = [0], we have that $xy \equiv 0 \mod n$, i.e., xy = nz for some $z \in \mathbb{Z}$. Since n is prime, 1 < x < n, and x|nz, it follows that x|z since $x \nmid n$. Thus z = kx for some $k \in \mathbb{Z}$ and substituting that into the earlier equation, we get

$$xy = nz = nkx.$$

Since $x \neq 0$, we then have

$$y = nk$$
.

This proves that [b] = [y] = [nk] = [0].

1